Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex).

نویسندگان

  • Juan F Vera
  • Lara J Brenner
  • Ulrike Gerdemann
  • Minhtran C Ngo
  • Uluhan Sili
  • Hao Liu
  • John Wilson
  • Gianpietro Dotti
  • Helen E Heslop
  • Ann M Leen
  • Cliona M Rooney
چکیده

The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2-cm wells in which cell growth is limited by gas exchange, nutrients, and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive, and not always conducive to CTL growth. We observed that antigen-specific CTLs undergo 7 to 10 divisions poststimulation. However, the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week-low frequency of antigen-specific T cells and high frequency of feeder cells-we were able to increase CTL expansion to expected levels that could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by the depth of the medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing the required technician time. Importantly, this amplified cell expansion is not because of more cell divisions but because of reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications.

BACKGROUND AIMS Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. METHODS We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells...

متن کامل

Optimization Manufacture of Virus- and Tumor-Specific T Cells

Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex). Thi...

متن کامل

Effect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells

Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...

متن کامل

Optimizing the production of suspension cells using the G-Rex “M” series

Broader implementation of cell-based therapies has been hindered by the logistics associated with the expansion of clinically relevant cell numbers ex vivo. To overcome this limitation, Wilson Wolf Manufacturing developed the G-Rex, a cell culture flask with a gas-permeable membrane at the base that supports large media volumes without compromising gas exchange. Although this culture platform h...

متن کامل

Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant

Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunotherapy

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2010